Skip to content

Roadmap

Planned enhancements and future features for LayerCode Gym.

Short-term (Next Release)

Audio Effects

Leverage Pydub to simulate real-world audio conditions:

  • Background Noise Injection: Add cafe chatter, office sounds, street noise
  • Loud Conversations: Simulate users in noisy environments
  • Accent Stress Testing: Use TTS with accent instructions to test transcription
  • Audio Quality Degradation: Test with compressed/low-quality audio
  • Connection Quality: Simulate packet loss and bandwidth limitations

Example API:

from layercode_gym.audio import AudioEffects

effects = AudioEffects(
    background_noise="cafe",  # cafe, office, street, none
    noise_level=0.3,          # 0.0 to 1.0
    quality="medium"          # low, medium, high
)

simulator = UserSimulator.from_text(
    messages=["Hello!"],
    send_as_text=False,
    audio_effects=effects
)

Enhanced Simulators

  • CSV-driven Scenarios: Load test scenarios from CSV files
  • Interrupt Patterns: Test barge-in and interruption handling
  • Multi-language Personas: Built-in support for multiple languages
  • Emotion Simulation: Add emotional context to personas

Example API:

# CSV-driven scenarios
simulator = UserSimulator.from_csv(
    file="scenarios.csv",
    text_column="user_message",
    metadata_columns=["expected_intent", "difficulty"]
)

# Interrupt patterns
simulator = UserSimulator.from_interrupts(
    base_messages=["Hello", "I want to..."],
    interrupt_probability=0.3,  # 30% chance to interrupt
    interrupt_messages=["Wait!", "Hold on"]
)

Mid-term (Next 3 Months)

Evaluation Tools

Built-in metrics and scoring:

  • Conversation Quality Metrics: Automated scoring for fluency, coherence, task completion
  • Intent Recognition Accuracy: Track if agent understood user intent
  • Regression Detection: Automatically detect performance degradation
  • Benchmark Suites: Pre-built test suites for common use cases

Example API:

from layercode_gym.evaluation import (
    IntentAccuracyMetric,
    FlowCoherenceMetric,
    RegressionDetector
)

# Add metrics
metrics = [
    IntentAccuracyMetric(expected_intents=["pricing", "features"]),
    FlowCoherenceMetric(min_score=0.7)
]

client = LayercodeClient(
    simulator=simulator,
    metrics=metrics
)

# Regression detection
detector = RegressionDetector(
    baseline_dir="conversations/baseline/",
    threshold=0.1  # 10% degradation tolerance
)

is_regression = detector.check(conversation_id)

A/B Testing Framework

Simplified A/B testing:

from layercode_gym.testing import ABTest

test = ABTest(
    name="greeting_test",
    variant_a_agent_id="agent_v1",
    variant_b_agent_id="agent_v2",
    scenarios=["Hello!", "Hi there!", "Good morning!"],
    num_runs_per_variant=50
)

results = await test.run()
print(results.summary())  # Statistical comparison

Dataset Generation

Generate training datasets from conversations:

from layercode_gym.datasets import ConversationDataset

# Generate dataset from conversations
dataset = ConversationDataset.from_conversations(
    conversations_dir="conversations/",
    format="jsonl",  # jsonl, csv, parquet
    include_audio=True
)

# Export for fine-tuning
dataset.export("training_data.jsonl")

Long-term (Next 6-12 Months)

Real-time Monitoring Dashboard

Web-based dashboard for live conversation monitoring:

  • Real-time conversation visualization
  • Performance metrics graphs
  • Alert system for failures
  • Historical trend analysis
# Start monitoring server
layercode-gym monitor --port 8080

# View at http://localhost:8080

Multi-Agent Scenarios

Support for multi-party conversations:

# Simulate group conversation
scenario = MultiAgentScenario(
    agents=[
        ("customer", customer_persona),
        ("support", support_agent_id),
        ("manager", manager_agent_id)
    ],
    conversation_flow="customer escalates to manager"
)

Integration Testing

Test complete flows including backend logic:

from layercode_gym.integration import IntegrationTest

test = IntegrationTest(
    name="booking_flow",
    steps=[
        ("user", "I want to book an appointment"),
        ("agent", "What day works for you?"),
        ("user", "Tomorrow at 2pm"),
        ("verify_database", "appointment_created"),
        ("verify_email", "confirmation_sent")
    ]
)

Performance Benchmarking

Compare against industry benchmarks:

from layercode_gym.benchmarks import IndustryBenchmark

benchmark = IndustryBenchmark(
    category="customer_support",
    metrics=["response_time", "resolution_rate", "satisfaction"]
)

score = benchmark.compare(conversation_ids)
print(f"Your agent scores {score.percentile}th percentile")

Community Requests

Features requested by the community:

Voice Biometrics Testing

Test speaker verification and identification:

simulator = UserSimulator.from_voice_samples(
    speaker_profiles=["speaker1.wav", "speaker2.wav"],
    test_speaker_id=True
)

Conversation Replay

Replay and modify past conversations:

from layercode_gym.replay import ConversationReplay

replay = ConversationReplay(
    conversation_id="conv_abc123",
    modify_turn=3,  # Change turn 3
    new_message="Different response"
)

new_conv_id = await replay.run()

Webhook Integration

Real-time notifications:

from layercode_gym.webhooks import WebhookNotifier

notifier = WebhookNotifier(
    url="https://your-server.com/webhook",
    events=["conversation_end", "error"]
)

client = LayercodeClient(
    simulator=simulator,
    notifier=notifier
)

Export to Video

Generate video demonstrations:

from layercode_gym.export import VideoExporter

exporter = VideoExporter()
exporter.create_video(
    conversation_id="conv_abc123",
    output="demo.mp4",
    include_subtitles=True,
    avatar="default"  # Animated avatar
)

Platform Support

Additional LLM Providers

  • Cohere
  • Together AI
  • Replicate
  • Local LLaMA via llama.cpp

Additional TTS Providers

  • Google Cloud TTS
  • Amazon Polly
  • PlayHT
  • Coqui TTS (local)

Additional Observability

  • Datadog integration
  • New Relic integration
  • Prometheus metrics
  • Grafana dashboards

Developer Experience

CLI Tool

# Quick start
layercode-gym init my-project
layercode-gym run scenario.yml
layercode-gym analyze conversations/

# Report generation
layercode-gym report --format html conversations/

# Continuous testing
layercode-gym watch tests/ --on-change run

VS Code Extension

  • Syntax highlighting for scenario files
  • IntelliSense for API
  • Run tests from editor
  • View results inline

Docker Support

# Run in container
docker run layercode-gym \
  -e SERVER_URL=http://host.docker.internal:8001 \
  -e AGENT_ID=your_agent_id \
  -v $(pwd)/conversations:/conversations \
  python examples/01_text_messages.py

Performance Goals

Target metrics for future releases:

  • Conversation Throughput: 1000+ concurrent conversations
  • Startup Time: < 100ms per conversation
  • Memory Usage: < 50MB per active conversation
  • Test Execution: < 1s for simple text scenarios

Contributing

Want to help build these features?

  • Check GitHub Issues for current work
  • Join discussions in GitHub Discussions
  • Submit PRs for features you'd like to see
  • Share your use cases and requirements

Feedback

Have ideas for the roadmap?

  • Open a feature request on GitHub
  • Share your use case
  • Vote on existing proposals
  • Contribute to discussions

Version History

v0.0.1 (Current)

  • Core client implementation
  • Three simulator types (text, files, agent)
  • LogFire integration
  • Basic callbacks and evaluation
  • Example scripts

Planned Releases

  • v0.1.0: Audio effects, CSV scenarios, enhanced metrics
  • v0.2.0: A/B testing framework, regression detection
  • v0.3.0: Real-time dashboard, dataset generation
  • v1.0.0: Production-ready with full feature set

Community

This is an unofficial project maintained by the community. Contributions and feedback are always welcome.