Roadmap¶
Planned enhancements and future features for LayerCode Gym.
Short-term (Next Release)¶
Audio Effects¶
Leverage Pydub to simulate real-world audio conditions:
- Background Noise Injection: Add cafe chatter, office sounds, street noise
- Loud Conversations: Simulate users in noisy environments
- Accent Stress Testing: Use TTS with accent instructions to test transcription
- Audio Quality Degradation: Test with compressed/low-quality audio
- Connection Quality: Simulate packet loss and bandwidth limitations
Example API:
from layercode_gym.audio import AudioEffects
effects = AudioEffects(
background_noise="cafe", # cafe, office, street, none
noise_level=0.3, # 0.0 to 1.0
quality="medium" # low, medium, high
)
simulator = UserSimulator.from_text(
messages=["Hello!"],
send_as_text=False,
audio_effects=effects
)
Enhanced Simulators¶
- CSV-driven Scenarios: Load test scenarios from CSV files
- Interrupt Patterns: Test barge-in and interruption handling
- Multi-language Personas: Built-in support for multiple languages
- Emotion Simulation: Add emotional context to personas
Example API:
# CSV-driven scenarios
simulator = UserSimulator.from_csv(
file="scenarios.csv",
text_column="user_message",
metadata_columns=["expected_intent", "difficulty"]
)
# Interrupt patterns
simulator = UserSimulator.from_interrupts(
base_messages=["Hello", "I want to..."],
interrupt_probability=0.3, # 30% chance to interrupt
interrupt_messages=["Wait!", "Hold on"]
)
Mid-term (Next 3 Months)¶
Evaluation Tools¶
Built-in metrics and scoring:
- Conversation Quality Metrics: Automated scoring for fluency, coherence, task completion
- Intent Recognition Accuracy: Track if agent understood user intent
- Regression Detection: Automatically detect performance degradation
- Benchmark Suites: Pre-built test suites for common use cases
Example API:
from layercode_gym.evaluation import (
IntentAccuracyMetric,
FlowCoherenceMetric,
RegressionDetector
)
# Add metrics
metrics = [
IntentAccuracyMetric(expected_intents=["pricing", "features"]),
FlowCoherenceMetric(min_score=0.7)
]
client = LayercodeClient(
simulator=simulator,
metrics=metrics
)
# Regression detection
detector = RegressionDetector(
baseline_dir="conversations/baseline/",
threshold=0.1 # 10% degradation tolerance
)
is_regression = detector.check(conversation_id)
A/B Testing Framework¶
Simplified A/B testing:
from layercode_gym.testing import ABTest
test = ABTest(
name="greeting_test",
variant_a_agent_id="agent_v1",
variant_b_agent_id="agent_v2",
scenarios=["Hello!", "Hi there!", "Good morning!"],
num_runs_per_variant=50
)
results = await test.run()
print(results.summary()) # Statistical comparison
Dataset Generation¶
Generate training datasets from conversations:
from layercode_gym.datasets import ConversationDataset
# Generate dataset from conversations
dataset = ConversationDataset.from_conversations(
conversations_dir="conversations/",
format="jsonl", # jsonl, csv, parquet
include_audio=True
)
# Export for fine-tuning
dataset.export("training_data.jsonl")
Long-term (Next 6-12 Months)¶
Real-time Monitoring Dashboard¶
Web-based dashboard for live conversation monitoring:
- Real-time conversation visualization
- Performance metrics graphs
- Alert system for failures
- Historical trend analysis
Multi-Agent Scenarios¶
Support for multi-party conversations:
# Simulate group conversation
scenario = MultiAgentScenario(
agents=[
("customer", customer_persona),
("support", support_agent_id),
("manager", manager_agent_id)
],
conversation_flow="customer escalates to manager"
)
Integration Testing¶
Test complete flows including backend logic:
from layercode_gym.integration import IntegrationTest
test = IntegrationTest(
name="booking_flow",
steps=[
("user", "I want to book an appointment"),
("agent", "What day works for you?"),
("user", "Tomorrow at 2pm"),
("verify_database", "appointment_created"),
("verify_email", "confirmation_sent")
]
)
Performance Benchmarking¶
Compare against industry benchmarks:
from layercode_gym.benchmarks import IndustryBenchmark
benchmark = IndustryBenchmark(
category="customer_support",
metrics=["response_time", "resolution_rate", "satisfaction"]
)
score = benchmark.compare(conversation_ids)
print(f"Your agent scores {score.percentile}th percentile")
Community Requests¶
Features requested by the community:
Voice Biometrics Testing¶
Test speaker verification and identification:
simulator = UserSimulator.from_voice_samples(
speaker_profiles=["speaker1.wav", "speaker2.wav"],
test_speaker_id=True
)
Conversation Replay¶
Replay and modify past conversations:
from layercode_gym.replay import ConversationReplay
replay = ConversationReplay(
conversation_id="conv_abc123",
modify_turn=3, # Change turn 3
new_message="Different response"
)
new_conv_id = await replay.run()
Webhook Integration¶
Real-time notifications:
from layercode_gym.webhooks import WebhookNotifier
notifier = WebhookNotifier(
url="https://your-server.com/webhook",
events=["conversation_end", "error"]
)
client = LayercodeClient(
simulator=simulator,
notifier=notifier
)
Export to Video¶
Generate video demonstrations:
from layercode_gym.export import VideoExporter
exporter = VideoExporter()
exporter.create_video(
conversation_id="conv_abc123",
output="demo.mp4",
include_subtitles=True,
avatar="default" # Animated avatar
)
Platform Support¶
Additional LLM Providers¶
- Cohere
- Together AI
- Replicate
- Local LLaMA via llama.cpp
Additional TTS Providers¶
- Google Cloud TTS
- Amazon Polly
- PlayHT
- Coqui TTS (local)
Additional Observability¶
- Datadog integration
- New Relic integration
- Prometheus metrics
- Grafana dashboards
Developer Experience¶
CLI Tool¶
# Quick start
layercode-gym init my-project
layercode-gym run scenario.yml
layercode-gym analyze conversations/
# Report generation
layercode-gym report --format html conversations/
# Continuous testing
layercode-gym watch tests/ --on-change run
VS Code Extension¶
- Syntax highlighting for scenario files
- IntelliSense for API
- Run tests from editor
- View results inline
Docker Support¶
# Run in container
docker run layercode-gym \
-e SERVER_URL=http://host.docker.internal:8001 \
-e AGENT_ID=your_agent_id \
-v $(pwd)/conversations:/conversations \
python examples/01_text_messages.py
Performance Goals¶
Target metrics for future releases:
- Conversation Throughput: 1000+ concurrent conversations
- Startup Time: < 100ms per conversation
- Memory Usage: < 50MB per active conversation
- Test Execution: < 1s for simple text scenarios
Contributing¶
Want to help build these features?
- Check GitHub Issues for current work
- Join discussions in GitHub Discussions
- Submit PRs for features you'd like to see
- Share your use cases and requirements
Feedback¶
Have ideas for the roadmap?
- Open a feature request on GitHub
- Share your use case
- Vote on existing proposals
- Contribute to discussions
Version History¶
v0.0.1 (Current)¶
- Core client implementation
- Three simulator types (text, files, agent)
- LogFire integration
- Basic callbacks and evaluation
- Example scripts
Planned Releases¶
- v0.1.0: Audio effects, CSV scenarios, enhanced metrics
- v0.2.0: A/B testing framework, regression detection
- v0.3.0: Real-time dashboard, dataset generation
- v1.0.0: Production-ready with full feature set
Community¶
This is an unofficial project maintained by the community. Contributions and feedback are always welcome.